

COMMUNITY TREES MAP SET: BRIDGEWATER TOWNSHIP

2022

A GUIDE TO THE MAP SET

WHAT IS GIS?

GIS is the abbreviation for geographic information systems, computer software that allows the user to overlay multiple layers of information, such as streets, buildings, and vegetation, on the earth's surface. GIS can help to better understand the distribution of these elements and discover relationships and patterns.

TERMS


LiDAR is the abbreviation for light detection and ranging, a remote (i.e. satellites or planes) sensing technology that can calculate the height of an object, such as buildings or vegetation, on the earth's surface.

Aerial photographs and satellite imagery are both remotely sensed images distinguished by the altitude and characteristics of the sensors, namely cameras or electronic scanners. In general, data taken at low-altitude captures more detail, but covers a smaller area. Some sensors can capture energy from portions of the electromagnetic spectrum, such as infrared, that the human eye cannot see! These additional wavelengths, or bands, provide more data to help distinguish between features on the ground.

Image classification is the task of categorizing pixels based on their spectral characteristics in a raw image. Supervised classification means the analyst teaches the software to classify the pixels, while unsupervised means the classes are assigned based on the distribution of values. The final result might be a map of land cover classes (agriculture, urban, forest, etc.), impervious surfaces, or tree canopy cover.

NAIP is the abbreviation for USDA's National Agriculture Imagery Program which, every three years, collects four-band "leaf-on" data (i.e. during the growing season) at a 1-meter (about 3.2 feet) resolution. The four-bands are red, green, blue, and near infrared, which can help distinguish healthy and diseased vegetation.

TERMS CONTINUED

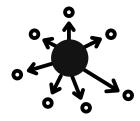
Land cover is the physical land type (forest, open water, wetlands, crops) and can be determined from remotely sensed images.

Land use is how people are using the land (recreation, industrial, residential, agriculture, commercial) and cannot necessarily be determined using satellite imagery or aerial photographs.

NLCD stands for National Land Cover Database, which provides nationwide United States data on land cover and land cover change at a 30m resolution. Since 2001, consistent methodologies and collection at 2-3 year intervals enables monitoring and trend assessments of land cover and associated changes over time. See the side bar for a brief overview of the land cover classes.

GRASS GIS, Geographic Resources Analysis Support System, is a free and open-source GIS software that began in 1982. It was developed as an international team effort that includes scientists and developers from various fields, including federal U.S. agencies, universities, and private companies. However, like most free software, it relies on users to develop new tools and applications and refine existing ones. QGIS is another example of a volunteer-driven, free and open-source GIS software that relies on users to improve and advance the product. ArcGIS, produced by Esri, is an example of a GIS software that is maintained and updated by a for-profit company. Selecting the appropriate GIS software might depend on the application, models to be integrated, and analyst/user comfort level,

TERMS CONTINUED


Stormwater runoff is snow melt or rainfall that, instead of soaking into the soil, flows over the ground and into stormdrains or waterbodies. Runoff doesn't receive any treatment, so anything it picks up (trash, chemicals, bacteria, sediment, etc.) can be flushed into our streams, rivers, and lakes and cause impairments for wildlife and human use. The large volume of runoff can also cause flooding, streambank erosion, and wash away habitat for wildlife.

Impervious surfaces prohibit the infiltration of water and are generally man-made structures, such as roads, sidewalks, buildings, parking lots, etc. Higher percentages of impervious surfaces in an area correspond to lower infiltration rates (ability of water to absorb into the soil) and increases in stormwater runoff.

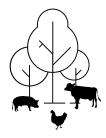
Habitat connectivity is concerned with wildlife's ability to migrate between suitable environments necessary for survival, reproduction, and life cycle. As landscapes are increasingly developed, habitats, such as forests, may be fragmented into smaller areas which may not be suitable for a particular species or may not provide all elements necessary for a creature's life cycle.

Urban heat islands (UHI) are metropolitan areas that are a lot warmer than neighboring rural areas due to a higher percentage of materials that absorb and trap heat from the sun, such as buildings and roadways. UHIs often have higher energy costs, air pollution levels, and heat-related illness and mortality. Trees and other vegetation help to counteract this effect by shading surfaces, deflecting radiation, and releasing moisture.

Census tracts are small, semi-permanent subdivisions of a county used in statistical analyses to determine trends in an area over time and managed by the US Census Bureau.

TERMS CONTINUED

Agroforestry is the intentional inclusion of trees and shrubs in crop and livestock farming systems for environmental, economic, and social benefits. Examples of agroforestry practices and some of its benefits include:


Alley cropping - Growing crops in alleys between regularly spaced rows of trees and shrubs intended to: diversify revenue streams, protect crops, and reduce soil erosion, nutrient leaching, and water runoff from fields.


Riparian buffers - Strips of permanent vegetation alongside a stream, wetland or lake planted or retained to protect crops by buffering floods, produce income in marginal farmland prone to flooding, diversify income, provide wildlife habitat and corridors, stabilize soils, and filter nutrients, pesticides, and sediment from farm runoff.

Silvopasture - Managing a wooded pasture through rotational grazing to support livestock and fodder trees or timber stand production to diversify income, improve livestock health, provide shade and wind protection, and support wildlife habitat.

Windbreaks - Strips of trees or shrubs strategically planted to protect crops, reduce soil loss, diversify income, provide wildlife corridors, and block views and odors. Also called shelterbelts, hedgerows, or living snow fences.

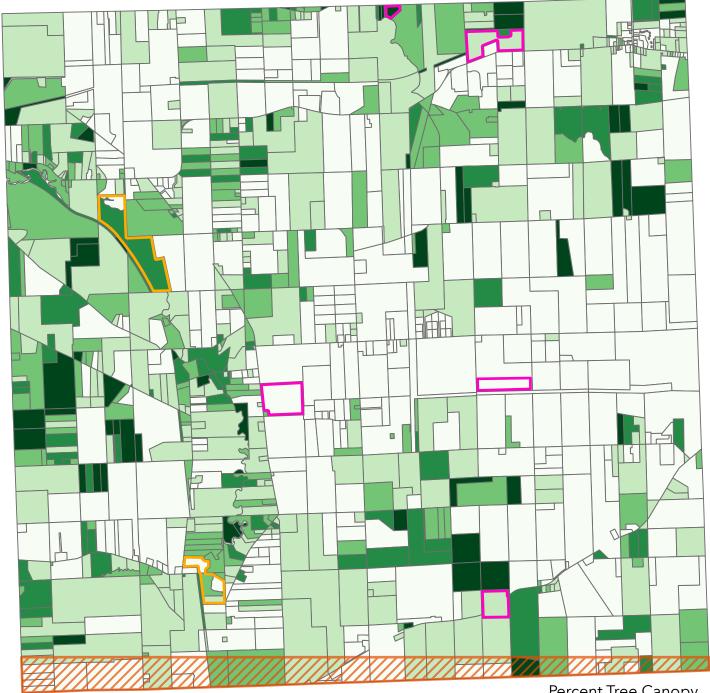
Watershed is all the land area that captures rainfall and snowmelt or other water runoff, like irrigation, and funnels it to a particular waterbody, such as a creek or river and eventually to an outflow point, such as a bay or ocean.

Headwaters are the start of the channel system and therefore close to a main source of water, such as a mountain stream or a groundwater aquifer seep. Downstream network health starts with nutrients, sediment, temperature, organic matter, and habitat quality in the headwaters.

Tree Canopy

Bridgewater Township

This map depicts tree canopy, the leafy cover provided by branches, and illustrates density and distribution across the township. Tree location influences the many social, economic, and environmental benefits they provide. Tree canopy was identified using 2020 aerial photography and 2017 LiDAR data, which determines the height of ground features. Areas where LiDAR data was unavailable (red cross hatch) were excluded from calculations.



Percent of Township Covered by Tree Canopy: 25% (5891 acres)

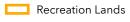
Tree Canopy - All Parcels

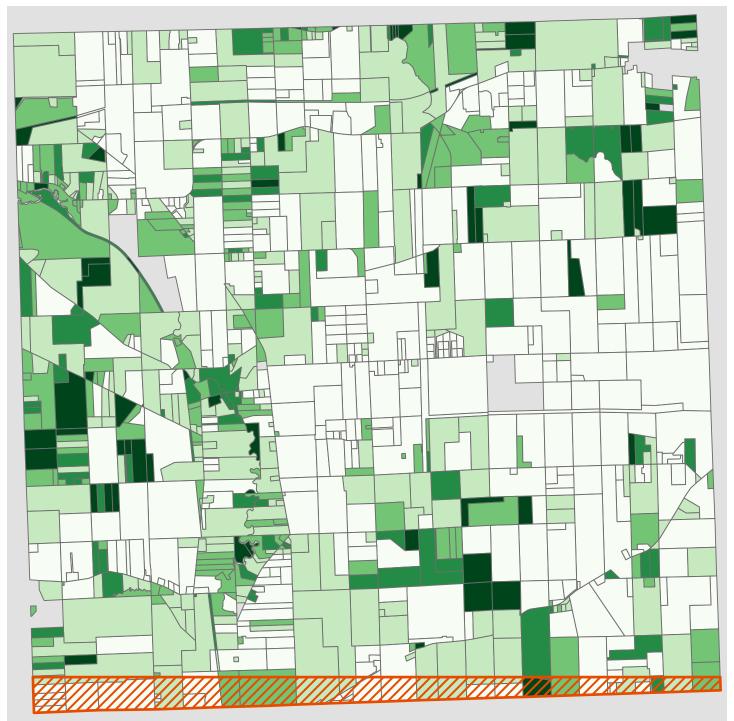
Bridgewater Township

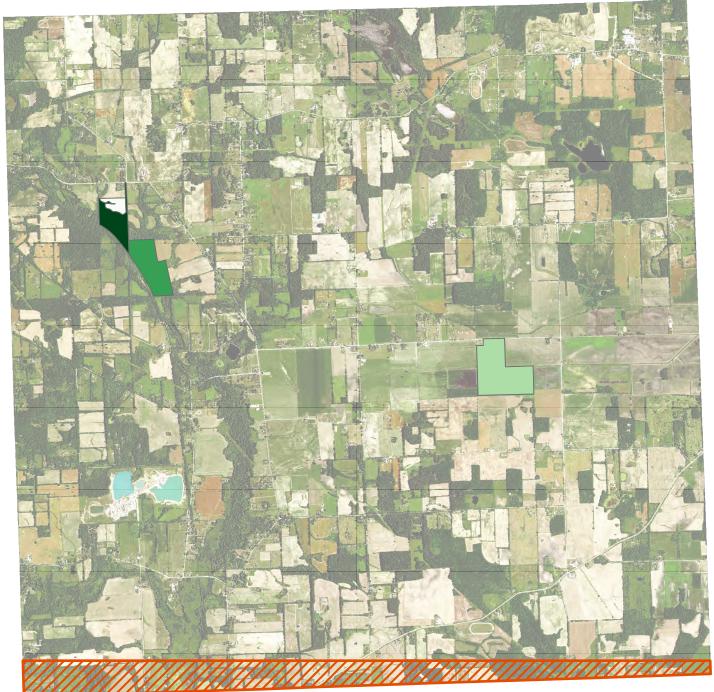
This map categorizes parcels by percent tree canopy cover. Tree canopy was determined using an unsupervised clustering algorithm applied to 2020 NAIP Aerial Imagery in combination with 2017 LiDAR data and then aggregated by land parcel. Note: Tree canopy percentages on the southern edge are skewed due to lack of canopy data.

Mean tree canopy in all parcels: 30%

Percent Tree Canopy






This map categorizes parcels zoned Agriculture by percent tree canopy cover. Tree canopy was determined using an unsupervised clustering algorithm applied to 2020 NAIP Aerial Imagery in combination with 2017 LiDAR data and then aggregated by land parcel. Note: Tree canopy percentages on the southern edge are skewed due to lack of canopy data.

Mean tree canopy in Agricultural Parcels: 39%

Percent Tree Canopy 0 - 20% 20.1 - 40% 40.1 - 60% 60.1 - 80% > 80%

ZZZ Canopy Data Unavailable

This map categorizes parcels zoned Conservation Preservation by percent tree canopy cover. Tree canopy was determined using an unsupervised clustering algorithm applied to 2020 NAIP Aerial Imagery in combination with 2017 LiDAR data and then aggregated by land parcel. Note: Tree canopy percentages on the southern edge are skewed due to lack of canopy data.

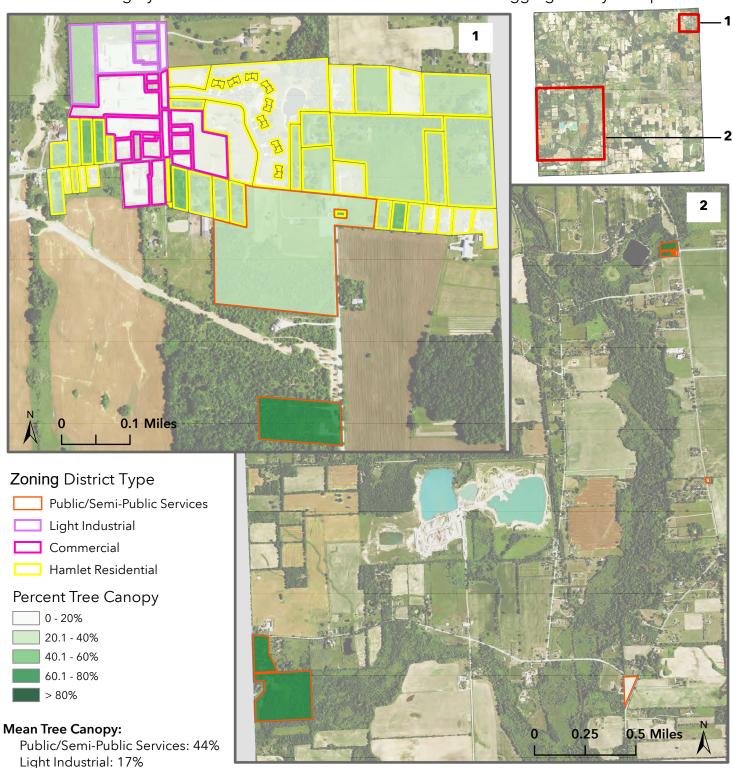
< 1% 6%

70%

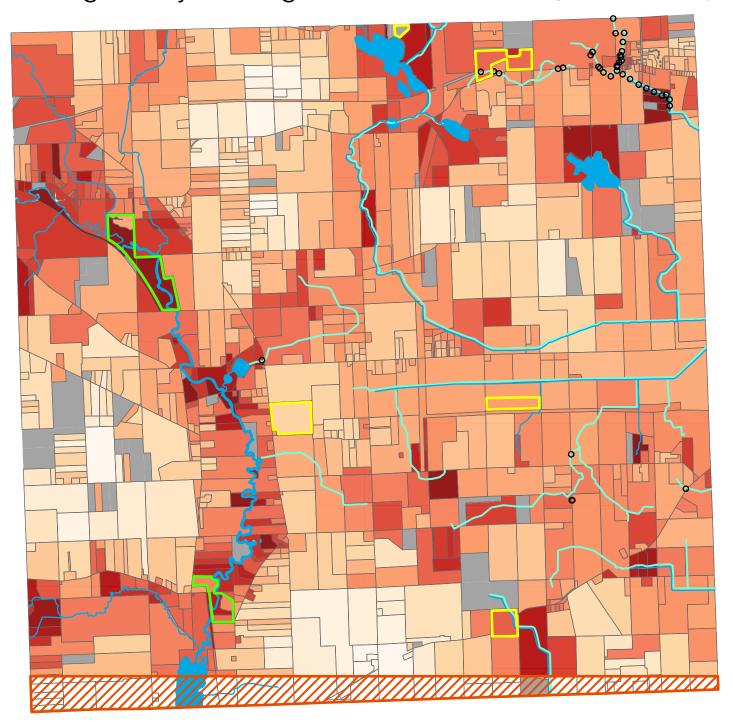
73%

Canopy Data Unavailable

Mean tree canopy in Conservation Preservation Parcels: 37%


Tree Canopy Business and Residential Districts

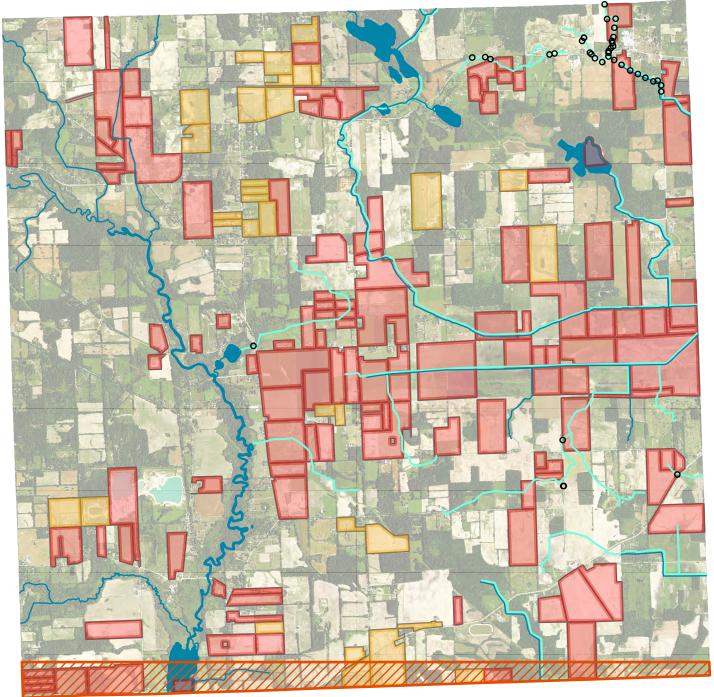
Commercial: 7%


Hamlet Residential: 20%

Bridgewater Township

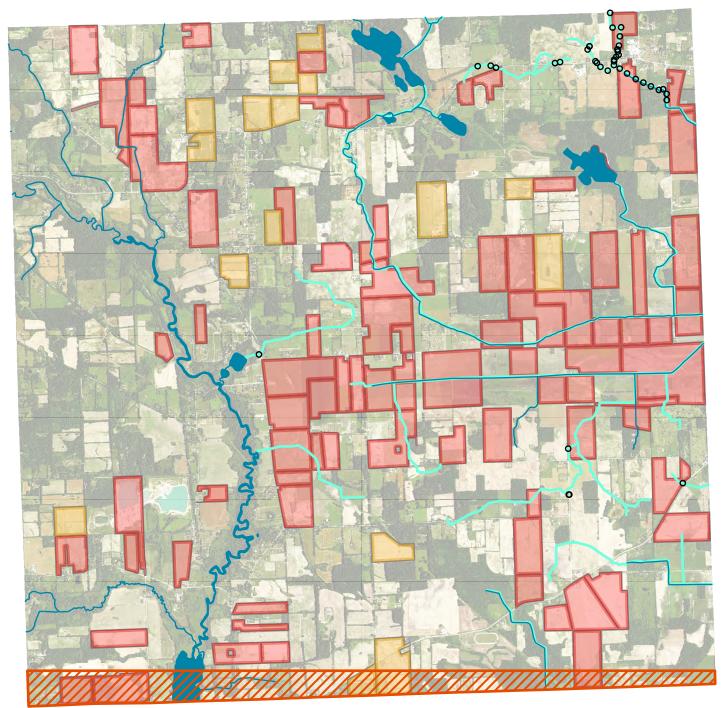
This map categorizes parcels zoned Business or Residential by percent tree canopy cover. A parcel zoned as Public/Semi-Public Services, Light Industrial, or Commercial are considered Business Districts. Tree canopy was determined using an unsupervised clustering algorithm applied to 2020 NAIP Aerial Imagery in combination with 2017 LiDAR data and then aggregated by land parcel.

Data Sources: NAIP 2020; Washtenaw County GIS Program - LiDAR, Parcels;
Bridgewater Township - Zoning
Datum/Projection: NAD 1983 State Plane Michigan South
Analysis/Cartography: Lyndsay Zemanek, May 10 2022

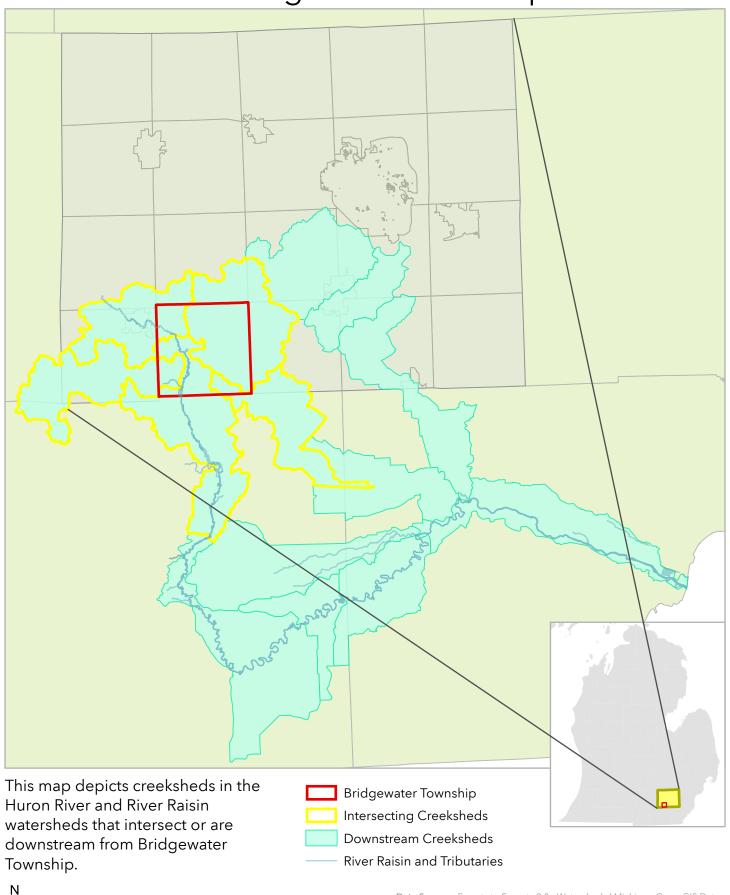


This map depicts tree planting priority in a scenario focused on ecological variables. Priority rankings for each parcel are determined from two considerations:

1) potential for rain and irrigation runoff to impact water quality and 2) connectivity of surrounding woodlands. Parcels with more than 80% tree canopy cover have been excluded.

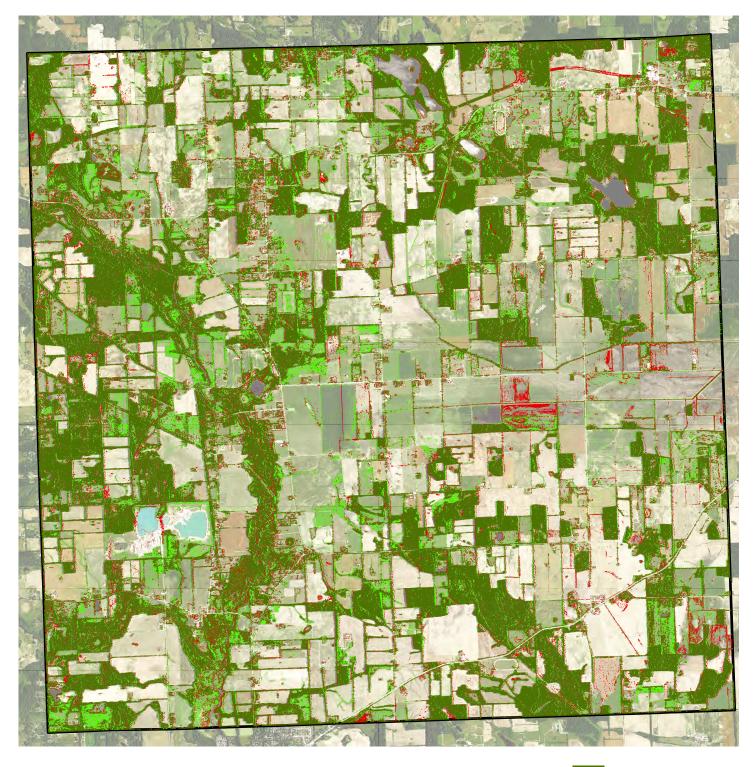

Tree Planting Priority High Low Catch Basins Natural Hydrology County Drains Recreation Lands Conservation Lands Tree Canopy > 80% Canopy Data Unavailable

This map depicts two-tiers of parcels where agroforestry practices (the intentional mixing of trees with crops or livestock) on agricultural parcels larger than 10 acres with less than 10% tree canopy may improve water quality. **High priority** parcels are within a quarter mile of natural hydrology, county drains, or catch basins. **Moderate priority** parcels are further than a quarter mile from natural hydrology, county drains, or catch basins.



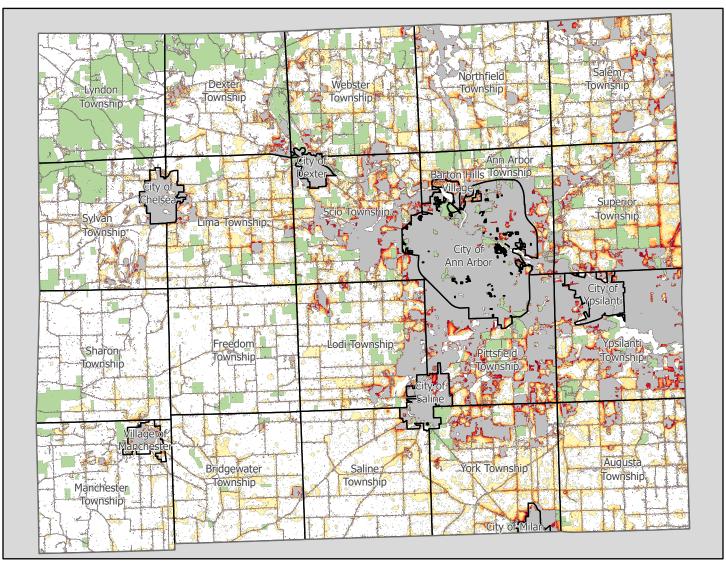
This map depicts two-tiers of parcels where agroforestry practices (the intentional mixing of trees with crops or livestock) on agricultural parcels larger than 20 acres with less than 10% tree canopy may improve water quality. **High priority** parcels are within a quarter mile of natural hydrology, county drains, or catch basins. **Moderate priority** parcels are further than a quarter mile from natural hydrology, county drains, or catch basins.

Watersheds of Bridgewater Township

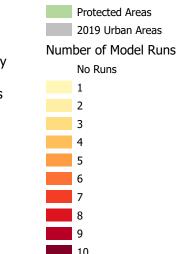


0 2.5 5 10 Miles

Data Sources: Forests to Faucets 2.0 - Watersheds | Michigan Open GIS Data - Hydrology, Counties | Washtenaw County GIS Program - Municipal boundaries Datum/Projection: NAD 1983 State Plane Michigan South Author: Lyndsay Zemanek, May 18 2022

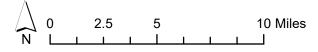

Bridgewater Township

This map depicts tree canopy change between 2010 and 2020. Note that some areas of tree canopy change can be attributed to classification errors due to differences between each year's imagery like camera or sun angle, rather than actual canopy loss or gain. Tree canopy is also likely overestimated for both years due to inclusion of woody shrubs.



FUTURES Urban Projections for 2045 Washtenaw County

This map shows the potential growth of urban development in Washtenaw County by 2045. The projections were created in GRASS GIS using the FUTURES model, which takes into account factors such as relationships between population growth and past development, road density, distance to water, distance to highway interchanges, canopy cover, and proximity to existing development. NLCD classes 21-24 were considered urban. Due to randomness in the model, ten runs were executed in which the darkness of a pixel increases with the number of runs predicting it will be developed. The table below shows the predicted mean (and standard deviation) loss in acres for each landcover type. Forest includes deciduous, evergreen, and mixed forest. Agriculture includes pasture and crops.


Land Cover	Barren	Forest total	Scrub/shrub	Grassland	Ag total
Mean (acres)	94.78	6422.29	78.35	207.15	16059.25
SD(acres)	24.8	225.67	10.54	15.36	206.01

borders, protected areas), SEMCOG (population projections) Datum/Projection: NAD83 Albers Conical Equal Area

Layout: Thomas Estabrook, 5/17/2022

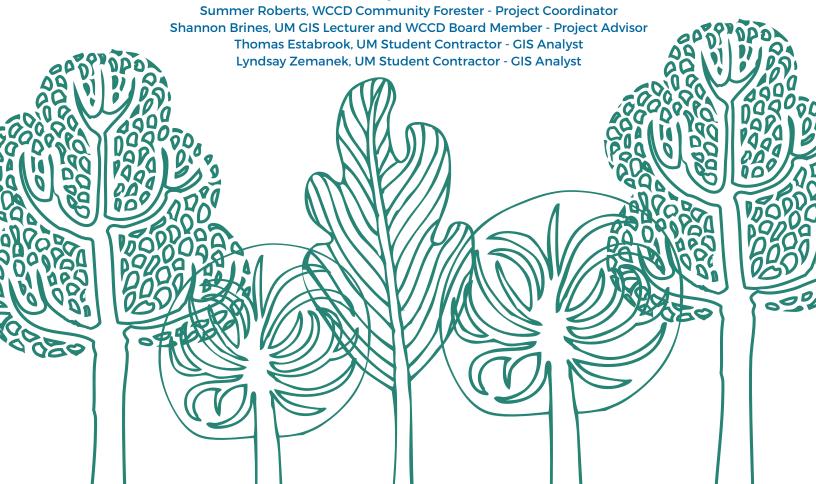
Data sources: NLCD (2019 urbanization), Washtenaw County Open Data (township

ACKNOWLEDGEMENT OF CONTRIBUTIONS

THANK YOU...

Grant Support

Michigan Department of Natural Resources' Urban and Community Forestry Program


Data and Project Support

Washtenaw County GIS Program
Washtenaw County Water Resources Commissioner's Office
Ann Arbor Area Transit Authority
Carlisle Wortman
Huron River Watershed Council

Pilot Municipalities

Bridgewater Township | Sharon Township | City of Ypsilanti | Ypsilanti Township

Project Team

